Medoxz543's workspace
Runs
64
Name
40 visualized
Runtime
Hostname
Notes
State
Sweep
Tags
eval_steps
gradient_accumulation_steps
greater_is_better
load_best_model_at_end
logging_steps
lora_alpha
lora_r
metric_for_best_model
model/num_parameters
num_train_epochs
peft_config.default.lora_alpha
peft_config.default.r
peft_config.default.target_modules
save_steps
target_modules
calibration/best_threshold
calibration/best_val_mcc
eval/accuracy
eval/f1
eval/f1_class_0
eval/f1_class_1
eval/loss
eval/matthews_corrcoef
eval/precision
eval/precision_class_0
eval/precision_class_1
eval/recall
eval/recall_class_0
eval/recall_class_1
eval/runtime
eval/samples_per_second
eval/steps_per_second
hp/lora_alpha
hp/lora_r
hp/lora_ratio
test/accuracy
test/accuracy_thresh_0.5
test/calibrated_accuracy
test/calibrated_mcc
test/f1
test/f1_class_0
test/f1_class_1
1h 24m 24s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
5
12
16
["attention.output.dense","key","query","value"]
200
-
-
-
0.67167
-
0.80359
0
0.63311
0
0.45114
0.67167
0
0.67167
1
0
31.6876
946.742
3.724
-
-
-
0.839
-
-
-
-
0.8755
0.77221
2h 15m 13s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
4
12
16
["attention.output.dense","query","key","value"]
200
-
-
-
0.8545
-
0.88858
0.7904
0.30978
0.6818
0.86069
0.91485
0.74989
0.8545
0.86377
0.83553
32.5201
922.507
3.629
-
-
-
0.8592
-
-
-
-
0.89272
0.79523
1h 42m 50s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
3
12
16
["key","attention.output.dense","query","value"]
200
-
-
-
0.863
-
0.89862
0.7888
0.30842
0.68755
0.86224
0.89333
0.79865
0.863
0.90397
0.77919
33.1859
903.999
3.556
-
-
-
0.8647
-
-
-
-
0.90039
0.78915
1h 45s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
3
12
16
["value","query","key","attention.output.dense"]
200
-
-
-
0.67167
-
0.80359
0
0.63308
0
0.45114
0.67167
0
0.67167
1
0
35.3904
847.687
3.334
-
-
-
0.8459
-
-
-
-
0.88979
0.74389
1h 57m 24s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
3
12
16
["key","value","query","attention.output.dense"]
200
-
-
-
0.85567
-
0.88991
0.7905
0.31032
0.68252
0.86074
0.91237
0.75513
0.85567
0.86854
0.82934
39.2156
765.001
3.009
-
-
-
0.8585
-
-
-
-
0.89291
0.79151
1m 55s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
126418948
1
12
16
["query","key","value","attention.output.dense"]
200
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2h 31m 46s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
1
12
16
["query","attention.output.dense","key","value"]
200
-
-
-
0.84553
0.84718
0.88231
0.77533
0.33045
0.65954
0.85052
0.90356
0.74202
0.84553
0.86203
0.81178
36.0295
832.651
3.275
-
-
-
0.8496
-
-
-
0.85093
0.88592
0.77934
17s
-
Finished
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1h 35m 41s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
1
12
16
["query","key","value","attention.output.dense"]
200
-
-
-
0.84997
0.84516
0.89349
0.74629
0.33588
0.64957
0.84899
0.85391
0.83893
0.84997
0.93692
0.67208
33.8701
885.738
3.484
-
-
-
-
-
-
-
-
-
-
2h 41m 45s
-
Finished
-
200
2
true
true
200
-
-
matthews_corrcoef
136673284
5
12
16
["attention.output.dense","value","query","key"]
200
-
-
-
0.8544
0.8496
0.89677
0.75305
0.32935
0.66019
0.85395
0.85618
0.84938
0.8544
0.9414
0.67635
30.9069
970.656
3.818
-
-
-
0.8513
-
-
-
0.84621
0.89473
0.74689
2h 34m 48s
-
Finished
-
300
4
true
true
300
-
-
matthews_corrcoef
136673284
8
12
16
["attention.output.dense","key","value","query"]
300
-
-
-
0.67177
0.53987
0.80366
0
0.63299
0
0.45127
0.67177
0
0.67177
1
0
30.7547
975.46
3.837
-
-
-
0.6718
0.6718
-
-
0.53992
0.80368
0
56m 26s
-
Finished
-
100
3
true
true
100
-
-
matthews_corrcoef
136673284
1
12
16
["query","value","attention.output.dense","key"]
100
-
-
-
0.8528
0.85182
0.89173
0.77014
0.33488
0.66243
0.85133
0.88132
0.78996
0.8528
0.9024
0.75129
36.906
812.876
3.197
-
-
-
0.8516
0.8516
-
-
0.85038
0.89114
0.76696
1h 18m 6s
-
Finished
-
100
3
true
true
100
-
-
matthews_corrcoef
136673284
1
12
16
["query","value","key","attention.output.dense"]
100
-
0.55
0.66534
0.8529
0.85204
0.89167
0.77093
0.33196
0.66303
0.85156
0.88237
0.78849
0.8529
0.90116
0.75414
37.7251
795.226
3.128
-
-
-
0.8541
-
0.8552
0.66421
0.85308
0.89276
0.77185
32m 12s
-
Finished
300
2
-
false
300
16
16
-
136378372
1
16
16
["key","value","query"]
500
["query","key","value"]
-
-
0.8542
0.85344
0.89251
0.77346
0.32855
0.66632
0.85298
0.88417
0.78916
0.8542
0.90101
0.75838
10.7528
929.992
3.72
16
16
1
0.8542
-
-
-
0.85344
-
-
30m 13s
-
Finished
300
2
-
false
300
24
16
-
136083460
1
24
16
["key","query"]
500
["query","key"]
-
-
0.8496
0.8489
0.889
0.76682
0.3384
0.6561
0.84845
0.88159
0.78062
0.8496
0.89655
0.7535
10.2896
971.856
3.887
24
16
1.5
0.8496
-
-
-
0.8489
-
-
32m 21s
-
Finished
300
2
-
false
300
4
32
-
137263108
1
4
32
["key","value","query"]
500
["query","key","value"]
-
-
0.8461
0.84541
0.8864
0.76151
0.34438
0.64816
0.84494
0.87919
0.77483
0.8461
0.89372
0.74863
10.8977
917.623
3.67
4
32
0.125
0.8461
-
-
-
0.84541
-
-
30m 22s
-
Finished
300
2
-
false
300
16
64
-
137852932
1
16
64
["key","query"]
500
["query","key"]
-
-
0.8465
0.84581
0.88669
0.76213
0.342
0.64908
0.84535
0.87948
0.77547
0.8465
0.89402
0.74924
10.3257
968.459
3.874
16
64
0.25
0.8465
-
-
-
0.84581
-
-
32m 17s
-
Finished
300
2
-
false
300
8
16
-
136378372
1
8
16
["key","value","query"]
500
["query","key","value"]
-
-
0.8515
0.85096
0.89022
0.77059
0.33123
0.66098
0.85057
0.88427
0.78157
0.8515
0.89625
0.7599
10.806
925.413
3.702
8
16
0.5
0.8515
-
-
-
0.85096
-
-
34m 54s
-
Finished
300
2
-
false
300
12
16
-
136673284
1
12
16
["attention.output.dense","key","value","query"]
500
["query","key","value","attention.output.dense"]
-
-
0.8562
0.85564
0.89373
0.77767
0.32371
0.6716
0.85526
0.88744
0.78939
0.8562
0.90012
0.7663
11.2851
886.126
3.545
12
16
0.75
0.8562
-
-
-
0.85564
-
-
34m 40s
-
Finished
300
2
-
false
300
4
16
-
136673284
1
4
16
["attention.output.dense","key","value","query"]
500
["query","key","value","attention.output.dense"]
-
-
0.8479
0.84721
0.88772
0.7643
0.33899
0.65228
0.84676
0.88051
0.77767
0.8479
0.89506
0.75137
11.4621
872.437
3.49
4
16
0.25
0.8479
-
-
-
0.84721
-
-
1-20
of 49